Что такое ионизирующее излучение?

Ионизирующие источники излучения (генерирующие) - это.

13.1. Виды ионизирующих излучений, их физическая природа и особенности распространения

К ионизирующим излучениям относятся корпускулярные (альфа-, бета-, нейтронные) и электромагнитные (гамма-, рентгеновское) излучения, способные при взаимодействии с веществом создавать заряженные атомы и молекулы — ионы.

Альфа-излучение представляет собой поток ядер гелия, испускаемых веществом при радиоактивном распаде ядер или при ядерных реакциях.

Их энергия не превышает нескольких МэВ. Чем больше энергия частиц, тем больше полная ионизация, вызванная ею в веществе. Пробег альфа-частиц, испускаемых радиоактивным веществом, достигает 8-9 см в воздухе, а в живой ткани — нескольких десятков микрон. Обладая сравнительно большой массой, альфа-частицы быстро теряют свою энергию при взаимодействии с веществом, что обуславливает их низкую проникающую способность и высокую удельную ионизацию, составляющую в воздухе на 1 см пути несколько десятков тысяч пар ионов.

Бета-излучение — поток электронов или позитронов, возникающих при радиоактивном распаде.

Энергия бета-частиц не превышает нескольких МэВ. Максимальный пробег в воздухе составляет 1800 см, а живых тканях 2,5 (нескольких десятков пар на 1 см пробега), а проникающая способность выше, чем альфа-частиц.

Нейтроны — поток которых образует нейтронное излучение преобразуют свою энергию в упругих неупругих взаимодействиях с ядрами атомов.

При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и из гама-квантов (гамма-излучение). При упругих взаимодействиях возможна обычная ионизация вещества.

Проникающая способность нейтронов существенно зависит от их энергии и состава вещества атомов, с которыми они взаимодействуют.

Гамма-излучение — электромагнитное (фотонное) излучение, испускаемое при ядерных превращениях или взаимодействии частиц.

Гамма излучение обладает большой проникающей способностью и малым ионизирующим действием. Энергия его находится в пределах 0,01 — 3 МэВ.

Рентгеновское излучение возникает в среде, окружающей источник бета-излучения (в рентгеновских трубках, в ускорителях электронов) и представляет собой совокупность тормозного и характеристического излучения, энергия фотонов которых составляет не более 1 МэВ.

Тормозное излучение — фотонное излучение с непрерывным спектром, испускаемое при изменении кинетической энергии заряженных частиц.

Характеристическое излучение — это фотонное излучение с дискретным спектром, испускаемое при изменении энергетического состояния атомов.

Как и гамма-излучение, рентгеновское излучение обладает малой ионизирующей способностью и большой глубиной проникновения.

Источник ионизирующего излучения (генерирующий) – это.

Источник ионизирующего излучения (генерирующий) – это электрофизическое устройство (рентгеновский аппарат, ускоритель, генератор и т.д.), в котором ионизирующее излучение возникает за счет изменения скорости заряженных частиц, их аннигиляции или ядерных реакций (ОСПОРБ, Приложение №8).

Как правило, генерирующий источник начинает излучать, только при подаче электропитания непосредственно на эксплуатируемый аппарат. После его выключения источник становится безопасным в отношении ионизирующего излучения, если в процессе работы не происходит активации его конструкций. В этом случае он еще некоторое время после выключения остается ИИИ, хотя и значительно менее интенсивным. В этом то и отличие ИИИ (генерирующих) от радионуклидных источников. Радионуклидные непрерывно излучают ионизирующее излучение, интенсивность которого уменьшается только по мере радиоактивного распада содержащихся в источнике радионуклидов.

Деятельность по использованию источников ионизирующего излучения (генерирующих) лицензируется. Регулирует получение лицензии Роспотребнадзора Постановление Правительства № 278 от 02.04. 2012 г. В лицензии обязательно указывается вид используемого радиационного источника.

Радиационными источниками называются не относящиеся к ядерным установкам комплексы, установки, аппараты, оборудование и изделия, в которых содержатся радиоактивные вещества или генерируется ионизирующее излучение (ст.3 ФЗ «Об использовании атомной энергии»). 

Последствия ионизирующего излучения для здоровья

Радиационное повреждение тканей и/или органов зависит от полученной дозы облучения или поглощенной дозы, которая выражается в грэях (Гр). Потенциальный ущерб от поглощенной дозы зависит от вида излучения и чувствительности различных тканей и органов.

Способность ионизирующего излучения причинить вред оценивается при помощи эффективной дозы. Единицей эффективной дозы, в которой учитывается вид излучения и чувствительность тканей и органов, является зиверт (Зв). Она позволяет измерять ионизирующее излучение с точки зрения потенциала нанесения вреда. Важным параметром, помимо количества радиации (дозы), является скорость поступления (мощность) дозы, которая выражается в микрозивертах в час мкЗв/час или миллизивертах в год (мЗв/год).

Облучение, превышающее определенные пороговые значения, может нарушить функционирование тканей и/или органов и вызвать острые реакции, такие как покраснение кожи, выпадение волос, радиационные ожоги или острый лучевой синдром. Эти реакции являются более выраженными при более высоких дозах и более высокой мощности дозы. Так, пороговая доза острого лучевого синдрома составляет приблизительно 1 Зв (1000 мЗв).

Если доза облучения является низкой и/или воздействует длительный период времени (низкая мощность дозы), обусловленный этим риск существенно снижается, поскольку в этом случае увеличивается вероятность восстановления поврежденных тканей. При этом не исчезает риск возникновения долгосрочных последствий излучения, таких как катаракта или рак, которые могут проявиться спустя годы или даже десятилетия. Подобные последствия возникают не всегда, однако их вероятность пропорциональна дозе облучения. Риск последствий выше у детей и подростков, поскольку они гораздо более чувствительны к воздействию радиации по сравнению со взрослыми людьми.

Эпидемиологические исследования, проведенные среди подвергшегося облучению населения, например людей, выживших после взрыва атомной бомбы или получавших лучевую терапию, демонстрируют значительное увеличение риска развития рака при дозах выше 100 мЗв. По данным проведенных в последнее время эпидемиологических исследований среди лиц, подвергавшихся медицинскому облучению в детском возрасте (КТ в детском возрасте), риск развития онкологических заболеваний может повышаться даже при более низких дозах (в диапазоне 50–100 мЗв).

Воздействие ионизирующего излучения на плод в утробе матери может вызвать повреждение головного мозга плода при сильной дозе свыше 100 мЗв на 8–15 неделях беременности и 200 мЗв на 16–25 неделях беременности. В ходе исследований с участием беременных было установлено, что облучение до 8 недели или после 25 недели беременности не создает риска для развития головного мозга плода. Эпидемиологические исследования свидетельствуют о том, что риск развития рака после облучения плода в утробе матери аналогичен риску после облучения в раннем детском возрасте.

Радиоактивные осадки

Серьезная проблема современности, связанная с недавними трагедиями на АЭС – распространение радиоактивных дождей. Выбросы в атмосферу радиации заканчиваются накоплением изотопов в атмосферной жидкости – облаках. При переизбытке жидкости начинаются осадки, которые представляют серьезную угрозу для сельскохозяйственных культур и человека.

Жидкость впитывается в земли сельскохозяйственных угодий, где произрастает рис, чай, кукуруза, тростник. Данные культуры характерны для восточной части планеты, где наиболее актуальна проблема радиоактивных дождей.

Ионное излучение оказывает меньшее воздействие на другие части света, потому что осадки не доходят до Европы и островных государств в области Великобритании

Однако в США и Австралии дожди иногда проявляются радиационные свойства, поэтому при покупке овощей и фруктов оттуда нужно проявлять осторожность

Радиоактивные осадки могут выпадать над водоемами, и тогда жидкость по каналам водоочистки и водопроводным системам может попасть в жилые дома. Очистные сооружения не обладают достаточной для снижения радиации аппаратурой. Всегда есть риск, что принимаемая вода – ионная.

Результат биохимического воздействия

Радиация влияет на структуру клеток организма, вызывая биохимические изменения: нарушения в циркуляции химических веществ и в функциях организма. Влияние волн проявляется постепенно, а не сразу после облучения.

Если человек попал под допустимую дозу (150 бэр), то отрицательные эффекты не будут выражены. При большем облучении ионизационный эффект увеличивается.

Естественное излучение равно примерно в 44 бэр в год, максимум – 175. Максимальное число лишь немного выходит за рамки нормы и не вызывает отрицательных изменений в организме, кроме головных болей или слабой тошноты у гиперчувствительных людей.

Естественное излучение складывается на основе радиационного фона Земли, употребления зараженных продуктов, использования техники.

Если доля превышена, развиваются следующие заболевания:

  1. генетические изменения организма;
  2. нарушения половой функции;
  3. раковые образования мозга;
  4. дисфункции щитовидной железы;
  5. рак легких и дыхательной системы;
  6. лучевая болезнь.

Лучевая болезнь является крайней стадией всех связанных с радионуклидами заболеваний и проявляется лишь у тех, кто попал в зону аварии.

Проникающая способность излучения

Все виды радиоактивного излучения разнятся по проникающей способности, то есть способность быстро преодолевать расстояния и проходить сквозь различные физические преграды.

Наименьшим показателем отличается альфа-излучение, а в основе ионизирующего излучения лежат гамма-лучи – самые проникающие из трех типов волн. При этом альфа-излучение оказывает самое отрицательное действие.

Оно опасно из-за следующих характеристик:

  • распространяется со скоростью света;
  • проходит через мягкие ткани, дерево, бумагу, гипсокартон;
  • останавливается только толстым слоем бетона и металлическим листом.

Для задержки волн, которыми распространяется данное излучение, на АЭС ставят специальные коробы. Благодаря им радиации не может ионизировать живые организмы, то есть нарушать молекулярную структуру людей.

Снаружи коробы состоят из толстого бетона, внутренняя часть обита листом чистого свинца. Свинец и бетон отражают лучи или задерживают их в своей структуре, не позволяя распространиться и нанести вред живому окружению.

Основная характеристика

Ионизирующее излучение – это разновидность энергии лучистой, попадающей в конкретную среду, вызывая процесс ионизации в организме. Подобная характеристика ионизирующих излучений подходит для рентгеновских лучей, радиоактивных и высоких энергий, а также многое другое.

Ионизирующее излучение оказывает непосредственное влияние на организм человека. Несмотря на то что ионизирующее излучение может применяться в медицине, оно чрезвычайно опасно, о чем свидетельствует его характеристика и свойства.

Известными разновидностями являются облучения радиоактивные, которые появляются по причине произвольного расщепления атомного ядра, что вызывает трансформацию химических, физических свойств. Вещества, которые могут распадаться, считаются радиоактивными.

Они бывают искусственными (семьсот элементов), естественными (пятьдесят элементов) – торий, уран, радий. Следует отметить, что у них имеются канцерогенные свойства, выделяются токсины в результате воздействия на человека могут стать причиной рака, лучевой болезни.

Необходимо отметить следующие виды ионизирующих излучений, которые оказывают воздействие на организм человека:

Альфа

Альфа лучи считаются положительно заряженными ионами гелия, которые появляются в случае распада ядер тяжелых элементов. Защита от ионизирующих излучений осуществляется с помощью бумажного листка, ткани.

Бета

Бета – поток отрицательно заряженных электронов, которые появляются в случае распада радиоактивных элементов: искусственных, естественных. Поражающий фактор намного выше, чем у предыдущего вида. В качестве защиты понадобится толстый экран, более прочный. К таким излучениям относятся позитроны.

Гамма

Гамма – жесткое электромагнитное колебание, появляющееся впоследствии распада ядер радиоактивных веществ. Наблюдается высокий проникающий фактор, является самым опасным излучением из трех перечисленных для организма человека. Чтобы экранировать лучи, нужно воспользоваться специальными устройствами. Для этого понадобятся хорошие и прочные материалы: вода, свинец и бетон.

Рентгеновское

Рентгеновское ионизирующее излучение формируется в процессе работы с трубкой, сложными установками. Характеристика напоминает гамма лучи. Отличие заключается в происхождении, длине волны. Присутствует проникающий фактор.

Нейтронное

Излучение нейтронное – это поток незаряженных нейтронов, которые входя в состав ядер, кроме водорода. В результате облучения, вещества получают порцию радиоактивности. Имеется самый большой проникающий фактор. Все эти виды ионизирующих излучений очень опасны.

Сравнительная таблица с характеристиками различных видов радиации

характеристика Вид радиации
Альфа излучение Нейтронное излучение Бета излучение Гамма излучение Рентгеновское излучение
излучаются два протона и два нейтрона нейтроны электроны или позитроны энергия в виде фотонов энергия в виде фотонов
проникающая способность низкая высокая средняя высокая высокая
облучение от источника до 10 см километры до 20 м сотни метров сотни метров
скорость излучения 20 000 км/с 40 000 км/с 300 000 км/с 300 000 км/с 300 000 км/с
ионизация, пар на 1 см пробега 30 000 от 3000 до 5000 от 40 до 150 от 3 до 5 от 3 до 5
биологическое действие радиации высокое высокое среднее низкое низкое

Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.

Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией < 10 КэВ (нейтронное излучение) 5
Нейтроны от 10 до 100 КэВ (нейтронное излучение) 10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) 20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) 10
Нейтроны > 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше «коэффициент k» тем опаснее действие определенного вида радиции для тканей живого организма.

Как защититься от облучения?

Определение эффективной защиты от вредных лучей лежит в основе профилактики поражения человека во избежание появления негативных последствий. Чтобы спастись от облучения необходимо:

  1. Сократить время воздействия элементов распада изотопов: человек не должен находиться в опасной зоне длительный период. К примеру, если человек работает на вредном производстве, пребывание работника в месте потока энергии должно сократиться до минимума.
  2. Увеличить расстояние от источника, сделать это возможно при использовании множественных инструментов и средств автоматизации, позволяющих выполнять работу на значительном расстоянии от внешних источников с ионизирующей энергией.
  3. Уменьшить площадь, на которую попадут лучи, необходимо с помощью защитных средств: костюмов, респираторов.

Искусственные источники ионизирующих излучений

Эти источники созданы самим человеком с целью какого-либо производства энергии (тепловой или электрической, к примеру). Не стоит забывать и об отнюдь не мирных целях создания искусственных радионуклидов. Военные цели также достаточно давно известны и распространены. Это всё за последние десятилетия привело к увеличению облучения как самой планеты, так и каждого отдельно взятого человека и живого существа, находящегося на ней. Но искусственное облучение, как правило, легче контролировать, в сравнении с радиоактивными осадками, например. 

Искусственные источники ионизирующих облучения используются в:

  • Создании электрической и тепловой энергии.
  • Ядерном топливном цикле.
  • Стерилизации изделий и пастеризации пищевых продуктов.
  • Контроле качества продуктов промышленности, строительства, транспорта.
  • Оценке наличия на местности природных полезных ископаемых.
  • Исследовании структуры веществ различного типа.
  • Медицинских исследованиях и открытиях.
  • Перевозке радиоактивных веществ.
  • Утилизации радиоактивных отходов.
  • Системе образования.

Не стоит забывать и о таких современных методах медицинской диагностики, как КТ, МРТ и рентген лёгких. Эти методы благодаря мирному атому позволяют поставить точный диагноз и диагностировать коварные болезни человечества, такие, как рак или пневмонию на ранних стадиях развития. Да, халатное обращение с радиацией накажет не только виновников этого деяния. Вспомнить, хотя бы, аварию на Чернобыльской АЭС, последствия которой ещё долго будут помнить как люди, так и природа планеты. Но радиация в правильных руках с благими намерениями позволяет получить уйму пользы, массу бесценных открытий в науке и медицине, промышленности и энергетике.

Виды источников радиации

Мнение, что радиация возникает только в результате жизнедеятельности человека, ошибочно. Слабый радиационный фон есть почти у всех живых объектов и у самой планеты соответственно. Поэтому избежать ионизирующего излучения очень сложно.

На основе природы возникновения все источники делятся на природные и антропогенные. Наиболее опасны антропогенные, такие, как выброс отходов в атмосферу и водоемы, аварийная ситуация или действие электроприбора.

Действие индивидуально: кто-то может почувствовать ухудшение самочувствия на фоне слабого излучения, другой же индивид окажется абсолютно не подвержен естественному фону.

Что такое радиация

Для начала дадим определение, что такое радиация:

В процессе распада вещества или его синтеза происходит выброс элементов атома (протонов, нейтронов, электронов, фотонов), иначе можно сказать происходит излучение этих элементов. Подобное излучение называют — ионизирующее излучение или что чаще встречается радиоактивное излучение, или еще проще радиация. К ионизирующим излучениям относится так же рентгеновское и гамма излучение.

Радиация — это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации.

Ионизация — это процесс образования положительно или отрицательно заряженных ионов или свободных электронов из нейтрально заряженных атомов или молекул.

Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.

Виды радиации

Альфа, бета и нейтронное излучение — это излучения, состоящие из различных частиц атомов.

Гамма и рентгеновское излучение — это излучение энергии.

Природные источники радиации

Основную опасность для человека представляют минеральные породы. В их полостях скапливается наибольшее количество незаметного для человеческих рецепторов радиоактивного газа – радона.

Он естественным образом выделяется из земной коры и плохо регистрируется проверочными приборами. При поставке строительных материалов возможен контакт с радиоактивными породами, и как результат – процесс ионизации организма.

Опасаться следует:

  1. гранита;
  2. пемзы;
  3. мрамора;
  4. фосфогипса;
  5. глинозема.

Это наиболее пористые материалы, которые лучше всего задерживают в себе радон. Данный газ выделяется из строительных материалов или грунта.

Он легче воздуха, поэтому поднимается на большую высоту. Если вместо открытого неба над землей обнаружено препятствие (навес, крыша помещения), газ будет скапливаться.

Большая насыщенность воздуха его элементами приводит к облучению людей, компенсировать которое можно только выведением радона из жилых зон.

Чтобы избавиться от радона, требуется начать простое проветривание. Нужно стараться не вдыхать воздух в том помещении, где произошло заражение.

Регистрация возникновения скопившегося радона осуществляется только при помощи специализированных симптомов. Без них сделать вывод о скоплении радона можно только на основе не специфичных реакций человеческого организма (головная боль, тошнота, рвота, головокружение, потемнение в глазах, слабость и жжение).

При обнаружении радона вызывается бригада МЧС, которая устраняет радиацию и проверяет эффективность проведенных процедур.

13.3. Биологическое действие ионизирующих излучений

Биологическое действие излучения зависит от числа образованных пар ионов или от связанной с ним величины — поглощенной энергии.

Ионизация живой ткани приводит к разрыву молекулярных связей и изменению химической структуры различных соединений. Изменение химического состава значительного числа молекул приводит к гибели клеток.

Под влиянием излучений в живой ткани происходит расщепление воды на атомарный водород Н и гидроксильную группу ОН, которые, обладая высокой активностью, вступают в соединение с другими молекулами ткани и образуют новые химические соединения, не свойственные здоровой ткани. В результате происходящих изменений нормальное течение биохимических процессов и обмен веществ нарушается.

Под влиянием ионизирующих излучений в организме происходит торможение функций кроветворных органов, нарушение нормальной свертываемости крови и увеличение хрупкости кровеносных сосудов, расстройство деятельности желудочно-кишечного тракта, истощение организма, снижение сопротивляемости организма инфекционным заболеваниям, увеличение числа белых кровяных телец. (лейкоцитоз).

Необходимо различать внешнее и внутреннее излучение.

Естественный фон излучения состоит из космического излучения и излучения естественно — распределенных радиоактивных веществ. Естественный фон внешнего излучения на территории нашей страны создает мощность эквивалентной дозы 0,36-1,8 мЗв в год, что соответствует мощности экспозиционной дозы 40-200 мР/год (фон в Москве 0,012 — 0,02 мР/час в Чернобыле было 15 мР/час).

Кроме естественного облучения, человек облучается ми другими источниками, например, при производстве рентгеновских снимков черепа 0,8 — 6 Р; позвоночника 1,6 — 14,7 Р; легких (флюорография) 0,2 — 0,5 Р; грудной клетке при рентгеноскопии 4,7 — 19,5 Р; желудочно-кишечного тракта при рентгеноскопии 12 — 82 Р; зубов 3 — 5 Р.

однократное облучение в дозе 25-50 бэр приводит к незначительным скоропроходящим изменениям в крови, при дозах облучения 80 — 120 бэр появляются печальные признаки лучевой болезни, но смертельный исход отсутствует. Острая лучевая болезнь развивается при однократном облучении 200-300 бэр, смертельный исход возможен в 50% случаев. Смертельный исход в 100% случаев наступает при дозах 550 — 700 бэр. Эти данные — когда лечение не проводится: существует ряд противолучевых препаратов, ослабляющих действие излучения.

Заболевания могут быть острыми и хроническими.

Источники излучения

Человек каждый день подвергается воздействию естественного и искусственного излучения. Естественное излучение имеет много источников, включая более 60 природных радиоактивных веществ, присутствующих в почве, воде и воздухе. Главным источником естественного излучения является радон – природный газ, выделяющийся из горных пород и почвы. Радионуклиды ежедневно вдыхаются человеком из воздуха и поступают в пищеварительный тракт с пищей и водой.

Человек подвергается также воздействию естественной радиации космических лучей, особенно на большой высоте. В среднем 80% ежегодной дозы, которую человек получает от фонового излучения, приходится на естественные наземные и космические источники излучения. Уровни такого излучения варьируются в разных географических зонах, а в некоторых районах его уровень может быть в 200 раз выше среднемирового показателя.

На человека воздействует также излучение из искусственных источников различного происхождения, от производства атомной энергии до использования радиации в медицинских целях при диагностике и лечении заболеваний. Самыми распространенными на сегодняшний день искусственными источниками ионизирующего излучения являются медицинские устройства, в частности рентгеновские аппараты и компьютерные томографы.

Ионизация вещества

Термин «ион» был введен М. Фарадеем. Изначально так назывались носители заряда в растворе. Впоследствии так стали называть атомы и молекулы, в электронных оболочках которых имеется недостаток или избыток электронов.

Нейтрально заряженное вещество, в атомах и молекулах которого равное количество положительных и отрицательных зарядов, может терять электроны под внешним воздействием. Такой процесс называется ионизацией.

Рис. 1. Ионизация вещества.

Ионизация может иметь различные механизмы, но во всех случаях электронам вещества сообщается энергия, достаточная для того, чтобы электроны покидали свои орбиты.

Понравилась статья? Поделиться с друзьями:
Ivbellen
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: